
Proving Code Execution On-Chain:
Zk-Coprocessors for Decentralized Applications

Santa Clara University Blockchain Club

Arthur Guiot

Director of Engineering
aguiot@scu.edu

Zach Teal

Director of Research
zteal@scu.edu

February 7, 2025

Abstract
Blockchain networks are often limited by on-chain
computation constraints and high gas costs, forcing
protocol developers to compromise on decentraliza-
tion or complexity. In this paper, we propose and
analyze the use of zero-knowledge (ZK) coprocessors,
focusing on solutions such as RISC0, SP1, and Ax-
iom, to enable verifiable off-chain computation. We
explore the technical fundamentals of zkSNARKs, zk-
STARKs, and RISC-V-based ZK virtual machines,
while also examining alternative approaches such as
trusted execution environments (TEEs) and secure
multi-party computation (MPC). We provide usage
examples ranging from dynamic lending controllers
in DeFi to verifiable margining for derivatives. By
presenting concrete details on memory, proof size, gas
considerations, and system constraints, we illustrate
how these systems unlock new classes of applications
for Ethereum and other blockchain networks while
preserving trustlessness.

1 Introduction
Blockchain technology promises decentralized, trust-
less computation. However, real-world protocols face
challenges when implementing advanced functional-
ity on-chain. Networks like Ethereum incur high

costs and low throughput for heavy computation,
forcing developers to move complex logic off-chain.
This move can compromise trust assumptions, effec-
tively introducing centralization risks.

Zero-knowledge (ZK) proof systems offer a cryp-
tographic means to bridge this gap. By performing
computation off-chain and then submitting succinct
proofs of correct execution on-chain, we preserve
decentralization while massively expanding compu-
tational capabilities. Recent advances in general-
purpose zero-knowledge architectures (e.g., RISC0,
SP1, Axiom) provide templates for building “zk-
coprocessors” analogous to hardware coprocessors in
traditional CPUs.

In this paper, we:
• Survey the background of zero-knowledge proofs

in blockchain.

• Highlight RISC0, SP1, and Axiom as key ZK-
coprocessor solutions, alongside alternative mod-
els such as TEEs and MPC.

• Present an expanded system design for verifiable
off-chain computation, focusing on practical as-
pects such as memory models, proof sizes, and
gas constraints.

• Demonstrate usage examples, including dynamic
lending controllers, on-chain risk analytics, and
verifiable derivatives margining.

1



• Discuss open challenges around performance,
trust models, and next steps in decentralized co-
processor adoption.

2 Background

2.1 Zero-Knowledge Proofs in
Blockchain

Zero-knowledge proofs (ZKPs) allow a prover to con-
vince a verifier of a statement’s truth without reveal-
ing any additional information. Their application in
blockchains has evolved significantly, mainly in the
forms of zkSNARKs and zkSTARKs.

zkSNARKs (Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge) offer very small
proof sizes (on the order of 128 bytes) but often
rely on a trusted setup. This setup can be a single-
ceremony event that introduces additional trust as-
sumptions.

zkSTARKs (Zero-Knowledge Scalable Transpar-
ent Argument of Knowledge) remove the need for a
trusted setup, typically at the cost of larger proofs
(tens of kilobytes) and higher gas costs for on-chain
verification. They leverage collision-resistant hash
functions and are considered post-quantum secure.

2.2 RISC0 and SP1 Technical Foun-
dation

RISC0 is a general-purpose zkSTARK-based prov-
ing system designed around a RISC-V architec-
ture, specifically riscv32im-risc0-zkvm-elf. This
choice balances computational expressiveness and
proving efficiency. The memory model relies on seg-
mented pages that enable proofs to scale to large pro-
grams while staying tractable. RISC0 implements a
maximum of 232 cycles per segment, permitting sub-
stantial off-chain computation.

SP1 is an augmented version of the RISC0 archi-
tecture focusing on expanding computational capac-
ity and introducing advanced pre-compiled circuits
dedicated to specific tasks such as cryptographic ac-
celeration or specialized arithmetic. These modifica-
tions aim to push performance boundaries, reducing

proof generation overhead while still producing suc-
cinct proofs.

2.3 Axiom: A ZK Coprocessor for
On-Chain Data Access

Axiom focuses on off-chain computation that accesses
large swaths of historical on-chain data. Ethereum
contracts typically cannot query extensive histori-
cal data without incurring prohibitive costs. Axiom
nodes retrieve such data, perform computations off-
chain, and generate zk-proofs for on-chain verifica-
tion. This approach has unlocked use cases like audit-
ing historical token transfers, building advanced on-
chain analytics, and verifying contract states across
large time windows.

2.4 Alternative Solutions: MPC and
TEEs

While ZK-coprocessors are powerful, other trust-
minimized off-chain computation models exist:

MPC (Multi-Party Computation) enables multi-
ple parties to jointly compute functions over private
inputs. Though powerful for privacy-preserving col-
laborations, MPC can have higher communication
overhead and typically lacks the succinct, easily veri-
fiable proof model of ZK. Fairness and correctness are
also more challenging to guarantee if the majority of
participants are corrupted.

TEEs (Trusted Execution Environments) like Intel
SGX and AWS Nitro Enclaves use secure hardware
to protect computations from external inspection or
tampering. TEEs can be easier to integrate, but they
require trusting hardware vendors and effectively cen-
tralize security in these environments. They do not
inherently produce succinct proofs for on-chain veri-
fication, although attestation can be used to provide
some trust signals.

2



3 System Design

3.1 High-Level Architecture
Figure 1 conceptually illustrates a zk-coprocessor ar-
chitecture:

1. Proof Generator (Off-Chain): Executes ar-
bitrary computations using a RISC-V-based
zkVM (e.g., RISC0, SP1). It produces a proof
attesting to the correctness of the computation.

2. Verification Smart Contract (On-Chain):
Receives the proof, verifies it, and updates on-
chain state accordingly.

3. Executor Environment and Guest Code:
The guest code is compiled for the specialized
RISC-V target, ensuring determinism. Public
data is committed into a proof journal, while pri-
vate data is excluded from the on-chain proof.

Ethereum Off Chain

RISC0

Verifier

Smart

Contract

verify
􀫥

Miner generating a proof

submit

receive reward

Figure 1: High-Level ZK-Coprocessor Architecture

The host environment orchestrates proof genera-
tion, data provisioning, and calls to the blockchain
for final verification. This separation ensures that
even large or complex computations remain efficient
off-chain, with only a succinct proof posted on-chain.

3.2 Proof Generation and Verification
During proof generation, the zkVM interprets every
instruction (load, store, arithmetic, branching) while

building a cryptographic commitment to the execu-
tion trace. The final proof is then combined with any
necessary public inputs (journal data) and submitted
on-chain to a verification contract.

Equation (1) provides a simplified representation
of a zkSNARK verification check:

e
(
A1, B1

)
· e

(
A2, B2

) ?= e
(
C, D

)
, (1)

where e(·) is a bilinear pairing,
(
A1, B1

)
and

(
A2, B2

)
represent the proof elements, and

(
C, D

)
is a public

verifier key component. Though abstract, it high-
lights the fundamental group operations that must
be performed on-chain. For zkSTARKs, the verifica-
tion process uses polynomial IOPs (Interactive Ora-
cle Proofs) and typically involves hash-based Merkle
commitments.

3.3 Smart Contract Design
A minimal two-contract architecture can be used:

• Application Contract: Contains business
logic or state updates contingent on proof ver-
ification.

• Verification Contract: A library or contract
(e.g., RISC0 or Axiom-provided) that validates
the zk-proof. It returns a boolean success/failure
to the Application Contract.

Since proof verification can cost hundreds of thou-
sands of gas on Ethereum L1, many developers opt
to deploy verification on an L2 chain (e.g., Arbi-
trum, Optimism, Base) for cheaper on-chain oper-
ations. This can significantly lower overhead, but
introduces cross-layer latency for state finality.

4 Use Cases and Examples

4.1 Dynamic Lending Controllers in
DeFi

Lending protocols can dynamically update interest
rates or collateral factors based on real-time on-chain
data. By using a zk-coprocessor, the system can
retrieve liquidity and utilization parameters, run a

3



control algorithm off-chain (potentially even an RL-
based or advanced model), and post a succinct proof
on-chain that the updates are derived honestly.

For instance, if U denotes the utilization ratio:

U = Total Borrowed
Total Liquidity ,

a feedback controller might set interest rates r as fol-
lows:

r = r0 + kp(U − Utarget),

where r0 is a base rate, and kp is a proportional pa-
rameter. The zk-coprocessor ensures that the off-
chain computations (e.g., reading historical data or
performing BFS-like calculations for liquidity model-
ing) are done correctly. The final interest rate adjust-
ment is published and verified on-chain, removing the
trust assumption of a centralized off-chain engine.

4.2 Machine Learning-Based Risk
Scoring

Smart contract systems often rely on up-to-date risk
profiles of users or tokens. A protocol could, for
example, run an ML model that analyzes on-chain
address histories to classify risk levels for credit or
lending. The model might be complex (e.g., a small
neural network or gradient boosting pipeline), thus
expensive to run fully on-chain. A zk-coprocessor
would:

1. Load the model weights and user address data.

2. Compute a risk score off-chain (in a zero-
knowledge environment).

3. Generate a proof that the model was executed
correctly against specific parameters.

4. Submit the proof on-chain, which can then con-
ditionally update an address’s borrowing limit.

Potential challenges include large model sizes, which
increase proof generation time. Continuations or par-
allel proving (through scalable GPU based proving
services like Bonsai) can mitigate these concerns.

4.3 Verifiable Derivatives Margining
Perpetual swaps and options require continuous po-
sition monitoring to prevent undercollateralized ac-
counts. Centralized exchanges implement margin
calculations behind closed doors, whereas a zk-
coprocessor can make these calculations transparent
and trustless:

• Off-chain engine reads positions and price data,
calculates margin requirements and potential liq-
uidations.

• A proof is generated that the margin logic is cor-
rect, referencing the on-chain oracle price feed.

• The proof is submitted to an on-chain contract,
which triggers liquidation if certain thresholds
are met.

This architecture preserves user trust and removes
the black-box nature of margin calls.

5 Comparisons with Other Off-
Chain Models

5.1 MPC
Although multi-party computation can enable
privacy-preserving analytics, verifying the final re-
sult on-chain in a succinct way is non-trivial. MPC
typically lacks succinct proof structures, and if many
MPC participants are corrupted, correctness can fail.
ZK-coprocessors offer a single-prover setup with a
single succinct proof, more straightforward for on-
chain verification.

5.2 TEEs
Trusted execution environments rely on hardware at-
testation rather than cryptographic zero-knowledge
proofs. While TEEs are extremely fast, they intro-
duce vendor trust assumptions and do not produce
easily verifiable proofs. For certain lower-stakes com-
putations, TEEs may be acceptable due to speed and
simplicity. But in a fully trustless environment, ZK-
coprocessors often represent a more secure solution.

4



6 Open Challenges and Future
Work

• Performance and Scalability: While RISC0
and SP1 push the boundaries of general-purpose
ZK computation, further optimization is needed.
Large-scale ML or real-time analytics remain ex-
pensive in proof generation.

• Storage and Data Availability: Off-chain
data feeding into computations may require trust
assumptions unless bridged through solutions
like data availability committees or Axiom’s ap-
proach to reading large historical datasets.

• Developer Tooling and Abstraction: User-
friendly toolchains, debugging interfaces, and
robust standard libraries are needed to reduce
complexity for mainstream adoption.

• Rollups vs. ZK-Coprocessors: While L2
rollups offer scale via batch processing of trans-
actions, they may not be sufficient for all ad-
vanced compute needs. Hybrid solutions that
combine rollups and ZK-coprocessors are an
evolving area.

7 Conclusion
Zero-knowledge coprocessors like RISC0, SP1, and
Axiom bring new capabilities to decentralized ap-
plications, enabling off-chain computation with on-
chain verifiability. From DeFi use cases such as dy-
namic interest rates and derivatives margining to ad-
vanced analytics and machine learning, these tech-
nologies preserve trustlessness while overcoming the
computational limits of the EVM. Although alterna-
tive models like TEEs and MPC play valuable roles,
zk-coprocessors provide a powerful balance of verifi-
ability, privacy, and flexibility.

Continued research is needed to improve perfor-
mance, expand developer tooling, and incorporate
better data availability solutions. As these plat-
forms mature, on-chain protocols will increasingly in-
tegrate high-performance off-chain compute without

conceding core decentralization guarantees, unlock-
ing a richer class of blockchain applications.

References
[1] RISC0 Project. RISC0 zkVM Documentation.

Available at: https://www.risczero.com/.

[2] Axiom. Axiom Documentation. Available at:
https://www.axiom.xyz/.

[3] Intel. Software Guard Extensions (SGX).
https://www.intel.com/content/www/
us/en/architecture-and-technology/
software-guard-extensions.html.

[4] Miller, A. MPC as a Blockchain Confidentiality
Layer.

5

https://www.risczero.com/
https://www.axiom.xyz/
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html

	Introduction
	Background
	Zero-Knowledge Proofs in Blockchain
	RISC0 and SP1 Technical Foundation
	Axiom: A ZK Coprocessor for On-Chain Data Access
	Alternative Solutions: MPC and TEEs

	System Design
	High-Level Architecture
	Proof Generation and Verification
	Smart Contract Design

	Use Cases and Examples
	Dynamic Lending Controllers in DeFi
	Machine Learning-Based Risk Scoring
	Verifiable Derivatives Margining

	Comparisons with Other Off-Chain Models
	MPC
	TEEs

	Open Challenges and Future Work
	Conclusion

